
TBIR - Trapdoor Bijection from Integer
Reciprocal.
This is the algorithm specification for TBIR - Trapdoor Bijection from Integer Reciprocal - an algorithm
for instantiating key encapsulation mechanism and digital signature schemes. 
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1. Algorithm Description.

Domain parameters: 

 which is a finite field of order . 

For ease of notation, we define  and 

 which is a XOF of appropriate security level.

input and output: 

each is a pair  of integers from .

public key: 

in its transport form, consist of 

a fixed-length public seed (64-bytes for this revision of the proposal) which is a byte
string.

10 large integers, grouped into 3 tuples: 

.

.

.

in its operational form, 

4 large integers, expanded from the seed using the XOF

the same 10 large integers from the transport form.

private key: 

in its transport form, 

two fixed-length seeds - 1 public, which is the same as that in the transport form of
the public key; 1 private, used to derive every other non-seed components in the
keys.

in its operational form, 

10 large integers, grouped into 3 tuples: 

.

.

.

TBIR stands for "Trapdoor Bijection from Integer Reciporcal".  As the name suggests,  it's  a bijection,
making it suitable for applications where a drop-in replacement for RSA is desirable, such as signature
with message recovery. The mathematical components of TBIR consist of:

2

• 

◦ K p

▪ pbits = floor(log2(p)) plen = ceil(pbits / 8)

◦ H

• 

◦ (x1, x2) K

• 

◦ 

▪ 

▪ 

▪ E = ( E0, E1, E2, E3 )

▪ F = ( F0, F1, F2 )

▪ G = ( G0, G1, G2 )

◦ 

▪ 

▪ 

• 

◦ 

▪ 

◦ 

▪ 

▪ A = ( A0, A1 ; A2, A3 )

▪ B = ( B0, B1 ; B2, B3 )

▪ C = ( C0, C1 )

The notation  represents row-major 2x2 square matrix, with u and v being on the upper row,
and w and x on the lower row; also, u and w are on the left side of the matrix while v and x on the right.

3 ( u, v ; w, x )
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1.1. Key Generation

Input: 

n : number of large integers to generate,

seed : the seed byte string to use,

Output: 

an array of n  elements in 

initialize and empty array ret .

for i  from 0 inclusive, up to but excluding n  (i.e. zero-based indexing) 

compute  byte  string  u  as  the  output  of  XOF:

H(seed+bytes([i+0x30])).digest(p_len)  -  that  is,  interpret  i  as  an  ASCII
digit, append it to seed, hash it with XOF and obtain a -byte digest.

interpret u  as an integer v  in big-endian byte order (i.e. most-significant byte first).

discard (clear) bits above bit  to obtain an element in 

append v  to ret .

return ret .

Input: 

an implicit instance of random number generator.

Output: 

pk : the public key,

sk : the private key.

Generate pkseed  and skseed  as 2 different fixed-length byte strings.

Compute .

Compute  ,  that  is,  append the ASCII  lower case letter  a  to

skseed  and use that to expand 4 large integers.

Compute  similarly, but only 2 components.

Compute the modular multiplicative inverse  of the determinant of row-major matrix .

Compute the determinant  of matrix ,

A subroutine used by the overall key generation process known as ExpandX  is defined as follow:4

ExpandX:5

• 

◦ 

◦ 

• 

◦ K

1. 

2. 

1. 

plen

2. 

3. pbits K

4. 

3. 

The key generation process takes an RNG to produce the public and private seeds, and computes the key
components which are a set of large integers.
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TBIR-KeyGen:7

• 

◦ 

• 

◦ 

◦ 

1. 

2. E = ExpandX(4, pkseed)

3. A = ExpandX(4, skseed + "a")

4. C = ExpandX(2, skseed + "c")

5. d A

6. B0 ( E0, E1 ; A0, A1 )
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Compute the determinant  of matrix ,

Compute the determinant  of matrix ,

Compute the determinant  of matrix ,

Produce the matrix .

Compute a vector .

Compute a tuple  from vector scalar-multiplication .

Compute a tuple  from vector scalar-multiplication .

Return .

1.2. Public and Private Functions

Input: 

a tuple of 2 elements 

Output: 

a tuple of 2 elements.

Compute .

Compute a vector 

Compute  as a dot product.

Compute  as another dot product.

Element-wise multiply entries in   with modular multiplicative inverses of entries in  , and
return the result as a tuple. Assert that it has exactly 2 elements.

Input: 

a tuple of 2 elements 

Output: 

a tuple of 2 elements.

Set   to element-wise product of modular multiplicative inverse of entries in  and entries in
.

Obtain the solution  of the linear system .

Set  to element-wise modular multiplicative inverse of entries in .

7. B1 ( E0, E1 ; A2, A3 )

8. B2 ( E2, E3 ; A0, A1 )

9. B3 ( E2, E3 ; A2, A3 )

10. B = ( dB0, dB1 ; dB2, dB3 )

11. S = ( A0 A2 , A0 A3 + A1 A2 , A1 A3 )

12. F S · C0

13. G S · C1

14. pk = ( pkseed , E , F , G ) , sk = ( skseed , A , B , C )

The public forward function, otherwise known as 'Enc' is defined as follow:8

TBIR-Enc:9

• 

◦ x = ( x0 , x1 )

• 

◦ 

1. U = E·x

2. w = ( x0
2 , x0 x1 , x1

2)

3. V0 = F·w

4. V1 = G·w

5. V U

The private inverse function, otherwise known as 'Dec' is defined as follow:10

TBIR-Dec:11

• 

◦ x = ( x0 , x1 )

• 

◦ 

1. M x
C

2. R M = B·R

3. T R
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Return the solution  of the linear system 

1.3. Parameter Sets

For 128-bit classical security,  is recommended, along with the XOF SHAKE-128,
or something of equivalent security.

This  yields  a  public  key  size  of   bytes,  and  a  cipher  transcript  size  of
 bytes.

For  256-bit  classical  security,  the  Mersenne  prime   is  recommended,  along
SHAKE-256, or something of equivalent security.

This  yields  a  public  key  size  of   bytes,  and  a  cipher  transcript  size  of
 bytes.

For 512-bit classical security, the Mersonne prime   is recommended, along with a
XOF  providing  appropriate  security.  In  the  absence  of  existing  instances,  a  non-standard
SHAKE-512 is recommended where the internal structure is the same as SHAKE-256, except the
capacity of the sponge is increased to 1024 bits.

This  yields  a  public  key  size  of   bytes,  and  a  cipher  transcript  size  of
 bytes.

2. Design Rationale.
Figure 2.1. Algorithmic Structure

     c1             c2
 ----------     ----------
  b1     b2      b3     b4
-----  -----   -----  -----
a1 a2  a3 a4   a1 a2  a3 a4
x1 x2  x1 x2   x1 x2  x1 x2

4. Y T = A·Y

• p = 2255 - 19

32·10 + 64 = 384
32·2 = 64

• p = 2521 - 1

65·10 + 64 = 714
65·2 = 130

• p = 21279 - 1

160·10 + 64 = 1664
160·2 = 320

TBIR consist of a 3-round substitution-permutation network (SPN). The substitution is a simple modular
multiplicative  inverse,  this  require  that  the  set  of  elements  form a  field.  The  permutation  is  simply
multiplication of 2-component vector with 2x2 matrix.

12

A naive way to produce the components required for the operation of TBIR, would be to generate every
individual A, B, and C, then compute their composition, and output that as the public key. Inspired by the
SNOVA MQ-based digital signature scheme designed by a team of scholars from Chinese Taipei,  the
author asks the question: can we generate a large portion of the public key from a seed, then compute
much of the private key components backwards?

13

Therefore, we compute the 2nd round public coefficients   from the public seed  pkseed . Then, we
derive the 1st round coefficients  from the private seed (with domain separation of course) and the 2nd
round private coefficients   from   and  .  The 3rd round coefficients have to be computed and
transported verbatim, so it cannot be compressed or expanded from a seed.

14 E
A

B E A

Both  and  are permutation matrices, applied to the input tuple. The components of  on the other
hand, is used to mask away the products of elements of  , and are multiplied with the input tuple to
produce the cipher transcript output from the private function.

15 A B C
A
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2.1. Hardness Assumption

2.2. Parameter Sets

2.3. Other Discussions

3. Security Analysis.

Because the resulting bijection redueces to a pair of bivariate quadratic equations over finite field, the
difficulty of producing a solution of such equation system is the basis for the security of TBIR.

16

As of Oct. 2025, the author is not aware of any algorithm solving the equation system that exploits its
structure  (i.e.  not  aware  of  any  solution  other  than  brutal-forcing  it).  There  are  however,  efficient
algorithms for deciding whether such equation system has any solution. The author is uncertain whether
this poses a threat to the secutiy of TBIR.

17

The selection of XOFs for the scheme is non-controvercial. The choice of the size of the prime is to twice
the level of security intended to provide - for one, it prepares for the anticipation of unknown attacks such
as birthday probability collision, and other reason is to increase difficulty from quantum cryptanalysis.

18

The  prime  numbers  are  chosen  to  be  the  same  as  that  for  Curve25519  and  P-521  so  that  existing
implementations on these algorithms can be repurposed for implementing TBIR. The Mersenne primes of
magnitude  521  and  1279  are  chosen  because  hashing  to  these  fields  result  in  very  low  chance  of
overflowing, which is why the prime numbers for P-256 or SM2 were not chosen.

19

As evidenced numerous  times  elsewhere,  defining  algorithms in  terms of  bits  causes  interoperability
troubles with byte-oriented programming, not to mention there's already the issue of endianness in the
world of bytes.

20

The generation and encoding of numbers therefore are defined in terms of bytes in big-endian byte order.
The  ExpandX algorithm don't expand bits for this very reason, more so because the field sizes are not
integral  multiplies of 8,  so shifting bits would be an implementation nightmare,  and masking is used
instead to discard unused bits.

21

The components of this cryptosystem are supposed to be byte-packed, and for components that're bit
strings, they're zero-padded to byte boundaries. ASN.1 syntax shouldn't be used below application level at
all in this algorithm.

22

The particular key establishment and digital signature schemes TBIR-KEM and TBIR-FDH inherit their
security proof from random oracle model.

23

The way private components are multiplied and added together ensures that private key recovery from
public key is impossible. Therefore the remaining attack(s) to consider would be evaluation of the private
function without the private key. To his end, an adversary can rewrite the public function as a system of 2
bivariate quadratic equations over finite field and attempt to obtain its solution. As of Oct.  2025, the
author is not aware of methods for obtaining such solution other than trying all possible solutions - i.e.
brutal-force.

24

One major side channel with this scheme is with the computation of modular multiplicative inverses.
While  major  cryptography  libraries  on  the  market  such  as  OpenSSL  may  have  done  extensive
optimization over this, care should nonetheless be taken when refactoring old or creating new codes.

25
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4. Performance Evaluations.

5. Features
TBIR is among the most compact post-quantum cryptosystems in terms of transmission bandwidth - at
512-bit  security,  a public key is about 1664 bytes -  on par with ML-DSA-44 which provides 128-bit
classical security.

26

TBIR is  also  a  simple  scheme to  comprehend,  leading  to  less  confusion  with  implementations,  thus
enhancing practical security.

27

TBIR is novel in its use of special technique to generate large part of the public key from seed, and
compute  large  part  of  private  key  components  from the  public  key.  TBIR is  also  novel  for  being  a
bijection that enables the implementation of functionalities such as signature with message recovery.

28
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