
TBIR - Trapdoor Bijection from Integer
Reciprocal.
This is the algorithm specification for TBIR - Trapdoor Bijection from Integer Reciprocal - an algorithm
for instantiating key encapsulation mechanism and digital signature schemes.

1

TBIR - Trapdoor Bijection from Integer Reciprocal. 1

2 TBIR - Trapdoor Bijection from Integer Reciprocal.

Table of Contents

Figures

1. Algorithm Description. 5

1.1. Key Generation 6

1.2. Public and Private Functions 7

1.3. Parameter Sets 8

2. Design Rationale. 8

2.1. Hardness Assumption 9

2.2. Parameter Sets 9

2.3. Other Discussions 9

3. Security Analysis. 9

4. Performance Evaluations. 10

5. Features 10

Figure 2.1. Algorithmic Structure 8

TBIR - Trapdoor Bijection from Integer Reciprocal. 3

4 TBIR - Trapdoor Bijection from Integer Reciprocal.

1. Algorithm Description.

Domain parameters:

 which is a finite field of order .

For ease of notation, we define and

 which is a XOF of appropriate security level.

input and output:

each is a pair of integers from .

public key:

in its transport form, consist of

a fixed-length public seed (64-bytes for this revision of the proposal) which is a byte
string.

10 large integers, grouped into 3 tuples:

.

.

.

in its operational form,

4 large integers, expanded from the seed using the XOF

the same 10 large integers from the transport form.

private key:

in its transport form,

two fixed-length seeds - 1 public, which is the same as that in the transport form of
the public key; 1 private, used to derive every other non-seed components in the
keys.

in its operational form,

10 large integers, grouped into 3 tuples:

.

.

.

TBIR stands for "Trapdoor Bijection from Integer Reciporcal". As the name suggests, it's a bijection,
making it suitable for applications where a drop-in replacement for RSA is desirable, such as signature
with message recovery. The mathematical components of TBIR consist of:

2

•

◦ K p

▪ pbits = floor(log2(p)) plen = ceil(pbits / 8)

◦ H

•

◦ (x1, x2) K

•

◦

▪

▪

▪ E = (E0, E1, E2, E3)

▪ F = (F0, F1, F2)

▪ G = (G0, G1, G2)

◦

▪

▪

•

◦

▪

◦

▪

▪ A = (A0, A1 ; A2, A3)

▪ B = (B0, B1 ; B2, B3)

▪ C = (C0, C1)

The notation represents row-major 2x2 square matrix, with u and v being on the upper row,
and w and x on the lower row; also, u and w are on the left side of the matrix while v and x on the right.

3 (u, v ; w, x)

Algorithm Description. 5

1.1. Key Generation

Input:

n : number of large integers to generate,

seed : the seed byte string to use,

Output:

an array of n elements in

initialize and empty array ret .

for i from 0 inclusive, up to but excluding n (i.e. zero-based indexing)

compute byte string u as the output of XOF:

H(seed+bytes([i+0x30])).digest(p_len) - that is, interpret i as an ASCII
digit, append it to seed, hash it with XOF and obtain a -byte digest.

interpret u as an integer v in big-endian byte order (i.e. most-significant byte first).

discard (clear) bits above bit to obtain an element in

append v to ret .

return ret .

Input:

an implicit instance of random number generator.

Output:

pk : the public key,

sk : the private key.

Generate pkseed and skseed as 2 different fixed-length byte strings.

Compute .

Compute , that is, append the ASCII lower case letter a to

skseed and use that to expand 4 large integers.

Compute similarly, but only 2 components.

Compute the modular multiplicative inverse of the determinant of row-major matrix .

Compute the determinant of matrix ,

A subroutine used by the overall key generation process known as ExpandX is defined as follow:4

ExpandX:5

•

◦

◦

•

◦ K

1.

2.

1.

plen

2.

3. pbits K

4.

3.

The key generation process takes an RNG to produce the public and private seeds, and computes the key
components which are a set of large integers.

6

TBIR-KeyGen:7

•

◦

•

◦

◦

1.

2. E = ExpandX(4, pkseed)

3. A = ExpandX(4, skseed + "a")

4. C = ExpandX(2, skseed + "c")

5. d A

6. B0 (E0, E1 ; A0, A1)

6 Algorithm Description.

Compute the determinant of matrix ,

Compute the determinant of matrix ,

Compute the determinant of matrix ,

Produce the matrix .

Compute a vector .

Compute a tuple from vector scalar-multiplication .

Compute a tuple from vector scalar-multiplication .

Return .

1.2. Public and Private Functions

Input:

a tuple of 2 elements

Output:

a tuple of 2 elements.

Compute .

Compute a vector

Compute as a dot product.

Compute as another dot product.

Element-wise multiply entries in with modular multiplicative inverses of entries in , and
return the result as a tuple. Assert that it has exactly 2 elements.

Input:

a tuple of 2 elements

Output:

a tuple of 2 elements.

Set to element-wise product of modular multiplicative inverse of entries in and entries in
.

Obtain the solution of the linear system .

Set to element-wise modular multiplicative inverse of entries in .

7. B1 (E0, E1 ; A2, A3)

8. B2 (E2, E3 ; A0, A1)

9. B3 (E2, E3 ; A2, A3)

10. B = (dB0, dB1 ; dB2, dB3)

11. S = (A0 A2 , A0 A3 + A1 A2 , A1 A3)

12. F S · C0

13. G S · C1

14. pk = (pkseed , E , F , G) , sk = (skseed , A , B , C)

The public forward function, otherwise known as 'Enc' is defined as follow:8

TBIR-Enc:9

•

◦ x = (x0 , x1)

•

◦

1. U = E·x

2. w = (x0
2 , x0 x1 , x1

2)

3. V0 = F·w

4. V1 = G·w

5. V U

The private inverse function, otherwise known as 'Dec' is defined as follow:10

TBIR-Dec:11

•

◦ x = (x0 , x1)

•

◦

1. M x
C

2. R M = B·R

3. T R

Algorithm Description. 7

Return the solution of the linear system

1.3. Parameter Sets

For 128-bit classical security, is recommended, along with the XOF SHAKE-128,
or something of equivalent security.

This yields a public key size of bytes, and a cipher transcript size of
 bytes.

For 256-bit classical security, the Mersenne prime is recommended, along
SHAKE-256, or something of equivalent security.

This yields a public key size of bytes, and a cipher transcript size of
 bytes.

For 512-bit classical security, the Mersonne prime is recommended, along with a
XOF providing appropriate security. In the absence of existing instances, a non-standard
SHAKE-512 is recommended where the internal structure is the same as SHAKE-256, except the
capacity of the sponge is increased to 1024 bits.

This yields a public key size of bytes, and a cipher transcript size of
 bytes.

2. Design Rationale.
Figure 2.1. Algorithmic Structure

 c1 c2
 ---------- ----------
 b1 b2 b3 b4
----- ----- ----- -----
a1 a2 a3 a4 a1 a2 a3 a4
x1 x2 x1 x2 x1 x2 x1 x2

4. Y T = A·Y

• p = 2255 - 19

32·10 + 64 = 384
32·2 = 64

• p = 2521 - 1

65·10 + 64 = 714
65·2 = 130

• p = 21279 - 1

160·10 + 64 = 1664
160·2 = 320

TBIR consist of a 3-round substitution-permutation network (SPN). The substitution is a simple modular
multiplicative inverse, this require that the set of elements form a field. The permutation is simply
multiplication of 2-component vector with 2x2 matrix.

12

A naive way to produce the components required for the operation of TBIR, would be to generate every
individual A, B, and C, then compute their composition, and output that as the public key. Inspired by the
SNOVA MQ-based digital signature scheme designed by a team of scholars from Chinese Taipei, the
author asks the question: can we generate a large portion of the public key from a seed, then compute
much of the private key components backwards?

13

Therefore, we compute the 2nd round public coefficients from the public seed pkseed . Then, we
derive the 1st round coefficients from the private seed (with domain separation of course) and the 2nd
round private coefficients from and . The 3rd round coefficients have to be computed and
transported verbatim, so it cannot be compressed or expanded from a seed.

14 E
A

B E A

Both and are permutation matrices, applied to the input tuple. The components of on the other
hand, is used to mask away the products of elements of , and are multiplied with the input tuple to
produce the cipher transcript output from the private function.

15 A B C
A

8 Design Rationale.

2.1. Hardness Assumption

2.2. Parameter Sets

2.3. Other Discussions

3. Security Analysis.

Because the resulting bijection redueces to a pair of bivariate quadratic equations over finite field, the
difficulty of producing a solution of such equation system is the basis for the security of TBIR.

16

As of Oct. 2025, the author is not aware of any algorithm solving the equation system that exploits its
structure (i.e. not aware of any solution other than brutal-forcing it). There are however, efficient
algorithms for deciding whether such equation system has any solution. The author is uncertain whether
this poses a threat to the secutiy of TBIR.

17

The selection of XOFs for the scheme is non-controvercial. The choice of the size of the prime is to twice
the level of security intended to provide - for one, it prepares for the anticipation of unknown attacks such
as birthday probability collision, and other reason is to increase difficulty from quantum cryptanalysis.

18

The prime numbers are chosen to be the same as that for Curve25519 and P-521 so that existing
implementations on these algorithms can be repurposed for implementing TBIR. The Mersenne primes of
magnitude 521 and 1279 are chosen because hashing to these fields result in very low chance of
overflowing, which is why the prime numbers for P-256 or SM2 were not chosen.

19

As evidenced numerous times elsewhere, defining algorithms in terms of bits causes interoperability
troubles with byte-oriented programming, not to mention there's already the issue of endianness in the
world of bytes.

20

The generation and encoding of numbers therefore are defined in terms of bytes in big-endian byte order.
The ExpandX algorithm don't expand bits for this very reason, more so because the field sizes are not
integral multiplies of 8, so shifting bits would be an implementation nightmare, and masking is used
instead to discard unused bits.

21

The components of this cryptosystem are supposed to be byte-packed, and for components that're bit
strings, they're zero-padded to byte boundaries. ASN.1 syntax shouldn't be used below application level at
all in this algorithm.

22

The particular key establishment and digital signature schemes TBIR-KEM and TBIR-FDH inherit their
security proof from random oracle model.

23

The way private components are multiplied and added together ensures that private key recovery from
public key is impossible. Therefore the remaining attack(s) to consider would be evaluation of the private
function without the private key. To his end, an adversary can rewrite the public function as a system of 2
bivariate quadratic equations over finite field and attempt to obtain its solution. As of Oct. 2025, the
author is not aware of methods for obtaining such solution other than trying all possible solutions - i.e.
brutal-force.

24

One major side channel with this scheme is with the computation of modular multiplicative inverses.
While major cryptography libraries on the market such as OpenSSL may have done extensive
optimization over this, care should nonetheless be taken when refactoring old or creating new codes.

25

Security Analysis. 9

4. Performance Evaluations.

5. Features
TBIR is among the most compact post-quantum cryptosystems in terms of transmission bandwidth - at
512-bit security, a public key is about 1664 bytes - on par with ML-DSA-44 which provides 128-bit
classical security.

26

TBIR is also a simple scheme to comprehend, leading to less confusion with implementations, thus
enhancing practical security.

27

TBIR is novel in its use of special technique to generate large part of the public key from seed, and
compute large part of private key components from the public key. TBIR is also novel for being a
bijection that enables the implementation of functionalities such as signature with message recovery.

28

10 Performance Evaluations.

	TBIR - Trapdoor Bijection from Integer Reciprocal.
	Algorithm Description.
	Key Generation
	Public and Private Functions
	Parameter Sets

	Design Rationale.
	Hardness Assumption
	Parameter Sets
	Other Discussions

	Security Analysis.
	Performance Evaluations.
	Features

